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Abstract

Background: Burkitt’s lymphoma (BL) is an aggressive Non-Hodgkin lymphoma. Epstein-Barr Virus (EBV) is able to
transform B cells and is a causative infectious agent in BL. The precise role of EBV in lymphoma progression is still
unclear. Most investigations have concentrated on cell autonomous functions of EBV in B cells. Functions of the
local environment in BL progression have rarely been studied, mainly due to the lack of appropriate in vivo
models. Therefore, we inoculated different human BL cell-lines onto the chorioallantoic membrane (CAM) of
embryonic day 10 (ED10) chick embryos and re-incubated until ED14 and ED17.

Results: All cell-lines formed solid tumors. However, we observed strong differences in the behavior of EBV+ and
EBV- cell-lines. Tumor borders of EBV+ cells were very fuzzy and numerous cells migrated into the CAM. In EBV-

tumors, the borders were much better defined. In contrast to EBV- cells, the EBV+ cells induced massive
immigration of chick leukocytes at the tumor borders and the development of granulation tissue with large
numbers of blood vessels and lymphatics, although the expression of pro- and anti-angiogenic forms of Vascular
Endothelial Growth Factors/receptors was the same in all BL cell-lines tested. The EBV+ cell-lines massively
disseminated via the lymphatics and completely occluded them.

Conclusions: Our data suggest that the EBV+ cells attract pro-angiogenic leukocytes, which then induce secondary
tumor-stroma interactions contributing to the progression of BL. We show that the CAM is a highly suitable in vivo
model to study the differential behavior of BL cell-lines.
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Background
With conventional chemotherapy, long-term remission
can be achieved in approximately 60% of patients with
disseminated “aggressive” Non-Hodgkin lymphoma
(NHL) [1]. The disease incidence is increasing, but etiolo-
gic factors contributing to this phenomenon remain still
largely unknown. Although it is a curable disease, many
patients do not achieve complete remission, or they
relapse after conventional chemotherapy. Tumor- and
host-related parameters are likely to reflect some under-
lying biologic mechanisms and differences in the
response to therapy [2,3]. One suggestion is that

deregulated components of the immune system may be
linked to the incidence and clinical course of lymphomas,
and the development of acute or chronic inflammatory
reactions at the tumor site. Cytokines, as major mediators
of inflammation, were found to be associated with the
transformation of lymphatic malignancies either as auto-
crine growth factors for the transformed cells or as fac-
tors rebuilding the tumor microenvironment, likely
affecting tumor progression and dissemination.
More than 50 years ago, Dennis Burkitt (1958)

described the high incidence of a very aggressive lym-
phoma in young children in equatorial Africa, which
now belongs to the group of NHL [4]. Later on by
Anthony Epstein, a herpes virus was identified in these
lymphoma cells. The Epstein-Barr virus (EBV), which is
found in appr. 95% of Burkitt’s lymphoma (BL) cases in
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subsaharean Africa, contributes to the pathogenesis of
BL, obviously in conjunction with a chronic severe and
thus most probably immunosuppressive Plasmodium
falciparum malaria infection [5,6]. However, numerous
questions about the effects of EBV in BL have remained
unanswered [7]. This is partially due to the lack of
appropriate experimental in vivo models to study the
progression of the disease. In vivo models are of utmost
importance, because lymphoma progression can be con-
trolled by interactions with the local environment,
mostly mediated by cytokines, chemokines, morphogens
and/or growth factors [8].
Despite their different cellular origins and divers

molecular signatures, lymphomas posses similar routes
for dissemination. Patients initially present with lymph
node swelling or primary lesions in lymphatic organs.
Dissemination takes place via lymphatic tissues and
tumor cells thereby reach downstream lymph nodes as
well as extra-lymphatic tissues. The clinical staging takes
into account the number of involved lymph nodes,
below and above the diaphragm. In highly progressed
stages, disseminated lymphoma cells are found in the
central nervous system, liver and the peritoneal cavity,
and obviously these organs become infiltrated by hema-
togenic dissemination - although direct connections
(stomata) between the peritoneal cavity and the lympha-
tics might as well serve as a route for lymphogenic dis-
semination [9,10].
There are indications that lymphoma dissemination

reflects the physiological migratory behavior of lympho-
cytes along blood and lymphatic vessels, and is not
necessarily a sign for tumor progression [11]. However,
high vascularity was found in the bone marrow of chil-
dren with acute lymphoblastic leukemia and a positive
correlation between the hemangiogenic protein Vascular
Endothelial Growth Factor-A (VEGF-A) and lymphoma
progression has been observed [12,13]. Lymphangiogenic
growth factors, most importantly VEGF-C and VEGF-D

[14-16], increase the number of lymph node metastases
of numerous carcinomas [17]. Thereby, proangiogenic
growth factors can be counteracted by endogenous inhi-
bitors. These are membrane-bound and soluble forms of
VEGFR-1 to inhibit VEGF-A, and the endogenous solu-
ble monomeric form of VEGFR-2 (esVEGFR-2), which
inhibits VEGF-C [17-19]. The ligands and their mem-
brane-bound receptors have been studied in various
types of lymphomas [20-25]. However, the endogenous
soluble inhibitors have not been studied yet, although
they seem to control the progression of childhood
tumors such as neuroblastoma [26]. The effects of EBV
on the expression of pro- and anti-hem/lymphangio-
genic members of the VEGF family, and the local pat-
terns of EBV+ vs. EBV- lymphoma cell dissemination
have not been studied in detail. We therefore compared
the migratory behavior of EBV+ and EBV- human BL
cell-lines and their interactions with the stroma in xeno-
grafts on the chick chorioallantoic membrane (CAM).
The CAM is densely supplied with both blood and lym-
phatic vessels [27] and well suited to study tumor-host
interactions [28]. Furthermore we used real-time RT-
PCR to quantify the expression of VEGFs and their
receptors in BL cell-lines. We observed significant dif-
ferences in the behavior of EBV+ and EBV- BL cell-lines,
although the expression of VEGFs did not differ
between the cell-lines.

Results
We incubated three human Burkitt lymphoma (BL) cell-
lines on the chick chorioallantoic membrane (CAM).
We chose the EBV- cell-line BL2, and the EBV+ cell-
lines BL2B95 and BL74. Inoculation of cells was on day
10 of chick embryo development, and tumors were stu-
died after 4 or 7 days. The EBV- BL2 cells formed solid
tumors with relatively sharp borders (Figure 1A). Only a
small number of lymphoma cells were seen in the CAM
at a distance of several hundred micrometers from the

Figure 1 BL2 cells stained with cell-tracker (green) and incubated on the CAM for 4 days. A) The cells form a solid tumor with almost
sharp borders. CAM vessels are faintly visible. Bar = 2 mm. B) Higher magnification of A) showing a few green tumor cells at some distance
from the solid tumor. Bar = 150 μm.
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tumor mass (Figure 1B). To verify that these cells were
lymphoma cells that had invaded the stroma of the
CAM (and not macrophages that had taken up the cell
tracker by engulfing tumor cells), we stained the speci-
mens with anti-human HLA antibodies. There was a
clear overlap of the HLA signal (red) with the cell-
tracker (green) (Figure 2), showing that tumor cells had
invaded the CAM stroma.
The EBV+ BL2B95 and BL74 cells showed a somewhat

different behavior. The borders of the tumors were
much more irregular and frayed (Figure 3A-D). Many
scattered cells were present at the tumor borders (Figure
3C). In most specimens we observed rows of tumor cells
that obviously followed preformed pathways into the
CAM (Figure 3B,D). In immunohistological specimens
we observed clusters of lymphoma cells in the CAM
stroma, and high densities of blood capillaries adjacent
to the tumors (Figure 4).
In semi-and ultrathin sections we observed distinct dif-

ferences in the behavior between the EBV+ and EBV-cell
lines. We started semi-thin sectioning at a distance of
approximately 7 mm from the lymphoma. In BL2 speci-
mens there was the regular morphology of the CAM with
chorionic and allantoic epithelium, stroma, blood and
lymphatic vessels (Figure 5A). In BL2B95 and BL74 spe-
cimens, large numbers of perivascular leukocytes were
found (Figure 5B-D). These cells obviously invaded the
stroma via postcapillary venules. This difference in leuko-
cyte numbers was consistently seen in EBV+ vs. EBV-

cases. Furthermore, for BL2 we found lymphoma cells

that were still embedded in Matrigel, as well as cells that
had invaded the adjacent stroma (Figure 6A,B). The
number of peritumoral blood vessels was low and these
vessels were seemingly only the pre-existing ones (Figure
6A,B). In contrast, for BL2B95 and BL74 we found large
numbers of both leukocytes as well as blood and lympha-
tic vessels in the peritumoral stroma (Figure 7A-C). Lym-
phoma cells that invaded the stroma of the CAM were in
immediate contact with the leukocytes (Figure 7D). The
results are summarized in Table 1.
Besides the large numbers of leukocytes and peritu-

moral vessels, we observed another significant difference
between EBV+ and EBV- cell-lines. BL2B95 and BL74
cells invaded lymphatic vessels at a much higher rate as
compared to BL2 cells. Although all cell-lines possessed
the potency to invade both blood an lymphatic vessels,
it became immediately obvious that the EBV+ cells com-
pletely filled the lymphatics, even at large distances from
the solid tumors (Figure 8A-D). In contrast, the BL2
cells migrated within the stroma, and rarely invaded the
lymphatic vessels (Figure 9A,B).
In summary, the morphological studies showed that

the EBV+ cell-lines BL2B95 and BL74 induced a stron-
ger immigration of chick leukocytes into the stroma at
the tumor borders, more blood and lymphatic vessels,
and they invaded the lymphatics much more strongly
than the EBV- BL2 cells (Table 1).
It has frequently been observed that hematogenic and

lymphogenic dissemination of tumor cells correlates
with the expression of hem-and lymphangiogenic

Figure 2 Staining of metastatic BL2 cells in the CAM. A) BL2 cells are marked with cell-tracker green. B) BL2 cells stain with anti-human-HLA
antibodies (red). C) Staining of all nuclei with Dapi (blue). D) Merged picture. Bar = 60 μm.
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growth factors, especially those of the Vascular Endothe-
lial Growth Factor (VEGF) family. Therefore, we quanti-
fied by real-time RT-PCR the expression of VEGF
ligands and VEGF receptors in BL2 and BL2B95 cells in
comparison with the neuroblastoma cell-lines SH-IN
and SH-EP. The expression of VEGF-A in the two BL
cell-lines was negligible (Figure 10A). We did not find
any expression of the lymphangiogenic factors VEGF-C
and VEGF-D in BL2 and BL2B95 (Figure 10B,C; Table
1). The membrane-bound form of VEGFR-1 and the
soluble form of the receptor, sVEGFR-1, were weakly
and equally expressed in the BL2 and BL2B95 cells
(Figure 10D,E). We did not observe any expression of
the membrane-bound VEGFR-2 (data not shown) and
secreted esVEGFR-2 in the two BL cell-lines (Figure
10F). Therefore, we hypothesize that the distinct tumor-
vessel interactions of the BL cells are not regulated

directly by VEGFs produced in the tumor cells, but
indirectly by the attracted leukocytes.

Discussion
It is known for long that the chorioallantoic membrane
(CAM) of chicken embryos can be used for tumor
engraftment [29], since the adaptive immune system is
not mature until the third week after hatching [30].
However, all types of blood cells and leukocytes develop
already in ovo. Firstly, erythrocytes (embryonic day 2,
ED2) and platelets (ED4) are found in the blood. Myelo-
poietic precursor cells (ED6) originate from the yolk sac,
and from ED8 onwards, erythropoietic and granulopoie-
tic cell islands are found in the liver [31,32]. CD3-posi-
tive pre-T-cells are found in the thymus on ED9 and T
cell receptor-1 and -2 are expressed on ED12 [33]. First
indications of B cell development can be seen on ED6

Figure 3 BL2B95 cells stained with cell-tracker (green) and incubated on the CAM for 4 days. The cells form solid tumors. The tumor
borders are less sharp than those of BL2 cells. CAM vessels are faintly visible. A) A great mass of tumor cells (asterisk) is seen adjacent to the
solid tumor (T). Bar = 2,5 mm B) Higher magnification of A). Note tumor cells (arrows) that obviously migrate from the tumor. Bar = 150 μm. C)
Numerous scattered lymphoma cells and clusters of lymphoma cells are present at some distance from the solid tumor (T). Bar = 300 μm. D)
Note lymphoma cells (arrows) lining up along a CAM vessel. Bar = 150 μm.
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and migration into the bursa of Fabricius takes place on
ED10 [34,35]. We inoculated the human lymphoma cell-
lines BL2, BL2B95 and BL74 in Matrigel on the CAM of
ED10 chick embryos and re-incubated until ED14 and
ED17. During this period, all types of leukocytes are
present in the embryo.
In this study we observed, for the first time in an in

vivo model, different reactions of the host tissue to EBV
+ BL cells as compared to EBV- BL cells. The EBV+ cell-
lines induced massive immigration of chick leukocytes
into the stroma at the tumor borders, more blood and
lymphatic vessels, and they invaded and completely
filled the lymphatics even at large distances from the
solid tumor. After 4 days of re-incubation, the borders
of the EBV+ tumors were much more irregular and
numerous tumor cells were seen invading the CAM. In
contrast, the borders of the EBV- tumors were much
better defined. We did not observe any differences in
the expression of the hem- and lymphangiogenic growth
factors VEGF-A, -C and -D, or their inhibitors VEGFR-
1, sVEGFR-1 and esVEGFR-2. In fact, the RNA expres-
sion levels for VEGF-A and -C were extremely low, or
absent, in BL2 and BL2B95, as compared to the NB

cell-lines SH-IN and SH-EP. In the latter cell-lines we
have previously quantified protein levels and found:
VEGF-A = 192 pg/ml supernatant for SH-EP and 2005
pg/ml for SH-IN; and VEGF-C = 140 pg/ml for SH-EP
and below detection level for SH-IN [26]. RNA and pro-
tein levels corresponded very well. Therefore, it is very
likely that no significant VEGF-A and -C protein levels
are detectable in BL2 and BL2B95. We therefore assume
that the differential tumor-vessel interactions of the
EBV+ cell-lines BL2B95 and BL74 as compared to the
EBV- cell-line BL2 are due to the immigration of leuko-
cytes induced by the former. The production of angio-
genic growth factors and matrix metalloproteinases by
immune cells is well documented [36].

Figure 4 BL2B95 cells stained with cell-tracker (green) form
solid tumors (T) on the CAM after 4 days. Clusters of lymphoma
cells (arrows) have invaded the CAM. Mep 21 staining (red) reveals a
large amount of blood capillaries in the CAM. Bar = 100 μm. Figure 5 Semi- and ultrathin sections of CAM tissue

approximately 7 mm apart from the solid tumor. A) In BL2
specimens the typical morphology of the CAM is found with capillaries
located in the chorionic epithelium (Ch), larger blood vessels and
lymphatics (L) in the stroma, and the allantoic epithelium (Al). Bar = 80
μm. B) In BL2B95 specimens large numbers of leukocytes (arrows) are
found in perivascular position. C, D) Ultra-thin sections of the specimen
shown in B). Note invasion of granulocytes and other leukocytes into
the CAM stroma. Bar = 10 μm.
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EBV is one out of eight members of the gamma
herpes-virus family, which have co-evolved with man. It
has established a mostly harmless but complex co-exis-
tence in B cells. Life-long EBV infection is found in
approximately 95% of the world’s population [37]. EBV
is the causative agent in infectious mononucleosis. How-
ever, its role in carcinogenesis is still poorly understood.
EBV seems to contribute to cellular transformation in a
defined window of B cell differentiation, but trans-
formed cells are usually recognized by the immune sys-
tem [38]. EBV is capable of transforming various cell
types. Most studies on EBV in BL have concentrated on
direct functions of the viral genome in the infected cells.
However, lymphoma progression can also be controlled

by interactions with the local environment [8]. We
observed specific interactions of the EBV+ BL cells with
the chick lymphatics. These were completely filled with
tumor cells, even at large distances from the solid
tumor. The EBV- BL2 cells migrated through the stroma
and only few of them invaded the lymphatics. Lymph
node involvement is an important criterion for clinical
staging of lymphomas. A direct involvement of the lym-
phatics has been observed in the rare cases of BL in
immunocompetent patients, where the disease is diag-
nosed in the orbita [39]. These patients show eyelid
edema and systemic involvement of the lymphatics. In
numerous cancers, the degree of lymphogenic metas-
tases is positively correlated with the expression of the
pro-lymphangiogenic factors VEGF-C and -D [17,40].
Here, we did not find any differences in the expression
of pro- and anti-lymphangiogenic factors in the three
BL cell-lines. However, we observed massive infiltration
of leukocytes into EBV+ tumors, and higher vascular
density. VEGF-C is expressed in macrophages, dendritic
cells and neutrophils, and up-regulated by the pro-
inflammatory cytokines IL-1a, IL-1b and tumor necrosis
factor-a [41]. We therefore propose that specific virus-
host interactions and secondary tumor-stroma interac-
tions contribute to the progression of BL via the lym-
phatic vascular system.

Conclusions
The mechanisms by which EBV contributes to the pro-
gression of BL are poorly understood. The increased
resistance to apoptosis of infected cells has been shown
in many studies. Modulation of the micro-environment
has also been regarded as an important aspect, but has
been difficult to study due to the paucity of in vivo
models. Our studies on EBV+ and EBV-BL cell-lines in
the chick chorioallantoic membrane seem to support
the concept of virus-mediated interactions with the vas-
cularized stroma. Although the tested cell-lines have
almost identical VEGF and VEGF-receptor expression
profiles they interact differentially with the vascular sys-
tem, both the blood vessels and the lymphatics.
Thereby, EBV+ BL cells induce massive immigration of
leukocytes, which may then induce hem- and lymphan-
giogenesis. It is likely that the latter promotes lympho-
genic dissemination of tumor cells.

Materials and methods
Cell culture
The human BL cell lines BL74 and BL2B95, which are
EBV+ [42], the BL2 cells, which are EBV- [43], and the
human neuroblastoma cell-lines SH-IN and SH-EP [26]
were maintained in a humidified incubator at 37°C and
5% CO2 atmosphere using RPMI 1640 medium (Lonza,
Basel, Switzerland) with 10% fetal bovine serum

Figure 6 Semi-thin sections of BL2 tumors. A) Tumor cells were
applied on the CAM within Matrigel, which is still visible after 7 days as
amorphous material (M). Ch, chorionic epithelium; Al, allantoic
epithelium. Insert: Higher magnification of lymphoma cells in Matrigel.
Note the large nuclei with one or several nucleoli. Bar = 120 μm. B)
Higher magnification of A) showing tumor cells in Matrigel (M). Tumor
cells have invaded the CAM stroma (St). Blood vessels (arrows); Mitotic
figures of lymphoma cells (arrowheads). Bar = 30 μm.
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(Biochrome, Berlin, Germany) and 1% penicillin/strepto-
mycin (Invitrogen, Darmstadt, Germany).

Labeling of cells
For the in vivo labeling of BL cells we used cell tracker-
green (CFDA; Molecular probes) at a final concentration
of 6 μM in serum-free medium for 45 min at 37°C.
Then, cells were incubated for 30 min in RPMI with
10% serum and 1% pen/strep. Cells were washed in
phosphate buffered saline and mixed with Matrigel:
serum (1:1) (B&D, Heidelberg, Germany).

Chick chorioallantoic membrane (CAM) assay
Fertilized White Leghorn chick eggs were incubated at 37.8°
C and 80% relative humidity. A window was made into the
egg shell at day three and sealed with cellotape. Eggs were

placed back in the incubator and at day 10 the lymphoma
cells (1 × 106 in Matrigel/serum; B&D) were applied on the
CAM. Tumors were studied at day 14 and day 17 of chick
development. Experimental BL2 tumors (n = 16), BL2B95
tumors (n = 18) and BL74 tumors (n = 8) were studied.

Semi- and ultra-thin sectioning
Specimens were fixed in Karnovsky’s fixative, post-fixed
in osmium tetroxide solution and embedded in Epon
resin (Serva, Heidelberg, Germany) according to stan-
dard techniques. Semi-thin sections of 750 nm were
stained with Richardson solution and studied with a
light microscope. Ultra-thin sections of 70 nm were
contrasted with lead citrate and uranyl acetate and stu-
died with a transmission electron microscope (TEM)
(Zeiss, Göttingen, Germany).

Figure 7 Semi-thin sections of BL74 and BL2B95 tumors. A) BL74 cells were applied on the CAM within Matrigel (M), which is visible after 4
days as amorphous material. Al, allantoic epithelium. Note the granulation tissue in the CAM stroma (St). Bar = 120 μm B) Higher magnification
of A) showing tumor cells in Matrigel (M). Note the large number of leukocytes (small round cells) and the numerous blood vessels (arrows) in
the CAM stroma. C) Peritumoral stroma of a BL2B95 tumor. Note large numbers of blood vessels and lymphatics (L). Bar = 30 μm in B,C. D)
Ultra-thin section showing tumor cells (T) in the CAM stroma immediately accompanied by chick leukocytes (arrowheads). Bar = 15 μm.
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Figure 8 Semi- and ultra-thin sections of BL2B95 tumors. A) At approximately 5 mm distance from the solid tumor, some lymphoma cells
are found in the CAM stroma. The CAM lymphatics (L) are completely filled with tumor cells. Bar = 300 μm. B - D) Higher magnification of the
specimen in A). B, C) Semi-thin sections. The lymphatics (L) are completely filled with tumor cells. Bar = 30 μm in B, and 40 μm in C. D) Ultra-
thin section showing lymphatic endothelium (LE) and tumor cells, which fill the vessel completely. Two leukocytes (arrowheads) are visible. One
is in contact with a dying lymphoma cell (asterisk), as seen by the heterochromatin condensation in the periphery of the nucleus. Bar = 10 μm.
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Table 1 Summary of results obtained with EBV+ and EBV- BL cell-lines.

Cell-
line

EBV Tumor
borders

Host’s leukocyte
infiltration

Hem-
angiogenesis

Lymph-
angiogenesis

Lymphogen.
dissemination

VEGF-
A

VEGF-
C

BL2 - rel.sharp low - - + - -

BL2B95 + Frayed high + + +++ - -

BL74 + frayed high + + +++ n.d. n.d.

Positve (+) and negative (-) results are marked; n.d. = not determined

Figure 9 Semi-thin sections of BL2 tumors. A) Immediately adjacent to the solid tumor (on the left side of the specimen), numerous
lymphoma cells have invaded the CAM stroma. Only very few cells are found in the CAM lymphatics (L). Bar = 400 μm. B) Higher magnification
of A) showing CAM lymphatics (L) invaded by only a few tumor cells (arrows). Bar = 80 μm.
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Immunohistology
Specimens were fixed for 15-20 min. with 4% parafor-
maldehyde (PFA), rinsed three times in PBS, trans-
ferred into 10% and 30% saccarose, and embedded in
tissue freeze medium (Sakura Finetek Europe, NL). Pri-
mary antibodies were HLA (Becton Dickinson) and
Mep21 (chick CD34 homolog; M. Williams, AbLab,
University of British Columbia, Vancouver, B.C.,
Canada; also see: [44]). Secondary antibodies were
Alexa 594-conjugated goat-anti-mouse IgG (Molecular
Probes, Eugene, USA), applied at 1:200 dilution. Sec-
tions were studied with Zeiss Axio Imager Z1 (Zeiss,
Göttingen, Germany).

Real-time RT-PCR
We prepared cDNA from 2 μg total RNA with Omniscript
reverse transcriptase (Qiagen, Hilden, Germany). Real-
time RT-PCR was performed with Opticon2 thermal
cycler (MJ Research, Waltham, MA), using SYBR green
JumpStart Taq ReadyMix (Sigma-Aldrich, Taufkirchen,
Germany). For esVEGFR-2 the reverse primer recognizes
the motif in intron 13, which is specific for the endogen-
ous soluble splice-variant of VEGFR-2 [18]. The probes
were normalized using b-actin probes. Relative expression
levels of transcripts were calculated with the ΔΔCt-
method using Microsoft Excel 2008 for Mac (Microsoft
Corp. Redmond, WA). Primers are listed in Table 2.

Figure 10 Real-time RT-PCR of BL2 and BL2B95 lymphoma cells in comparison with neuroblastoma (NB) cells. Expression of A) VEGF-A,
B) VEGF-C, C) VEGF-D, D) VEGFR-1, E) sVEGFR-1 and F) esVEGFR-2. As compared to NB cells Shep and SK-IN there is no significant expression of
the growth factors in the BL2 and BL2B95 cells. Membrane-bound and soluble forms of VEGFR-1 are weakly and equally expressed in the
lymphoma cell-lines, while esVEGFR-2 is not expressed.
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